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Unsupervised learning, self-organization,  and data compression
In an earlier lecture, we saw an example of the increased computational power of a multi-layer network. The reason for the 
increased power is that the hidden units discover effective ways of representing contingencies in the training data set. For 
example, a solution to the XOR problem in effect discovers how to do AND as well as OR relations, and piece these 
together.

One of the problems with multi-layer nets is understanding exactly what they have discovered and are representing in the 
hidden layers. It is perhaps easiest to begin tackling this problem by setting up a network to do autoassociation.

Let's turn the supervised 3-layer backprop network into an unsupervised learning algorithm simply by setting the output 
equal to the input. Then we are seeking weights that achieve the goal that the outputs come as close as possible to matching 
the inputs, in a least squares sense. If we have a smaller number of hidden units than input or output units, we can ask: What 
has the network discovered about the input ensemble that is captured with the smaller dimensionality of the hidden unit 
layer? 



Input Units

Hidden Units

Output Units

A theoretical result (Baldi and Hornik, 1988) showed that for the linear case this kind of network is closely related to a 
standard statistical technique called "Principle Components Analysis", that dates back to 1933 (Hotelling, H. (1933). 
Analysis of a complex of statistical variables into principal components. J. Educ. Psych., 24, 417-441,498-520). The idea is 
that the variability in a data set consisting of n-dimensional vectors may concentrate along certain axes or subspaces of 
dimension m<n. Principal components analysis is one standard technique for finding the dimensions which capture the most 
variation. Suppose there are n input units, and m hidden units. Baldi and Hornik showed that the hidden units were finding 
the m-dimensional sub-space that capture the most variance. This is not exactly principal components analysis, but it is 
closely related.

In this notebook you will learn about PCA, and then see how it can be done by neural-like systems that use local hebbian 
learning, and avoid error back-propagation.

In order to understand PCA, let's start with the following simple two neuron system. The rationale is that the two neuron 
system will give us insight into the problem of finding structure in data sets with really high dimensionality, such as images 
or speech.

Statistical model of the correlations of a 2D input ensemble
Consider a "two-neuron" system whose inputs are correlated. The random variable, rv, is a 2D vector. The scatter plot for 

this vector has a slope of Tan[theta] = 0.41. The variances along the axes are 4^2 and .252 (.0625).  gprincipalaxes is 

a graph of the principal axes which we will use for later comparison with simulations. 
ContinuousDistributions.m is a Mathematica  package that you have seen before and that provides routines for 
sampling from a Gaussian (or Normal) distribution, rather than the standard uniform distribution that Random[] provides.
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ndist = NormalDistribution[0,1];theta = Pi/8;
bigstd = 4.0; smallstd = 0.25;
alpha = N[Cos[theta]]; beta = N[Sin[theta]];
rv := 
{bigstd x1 alpha + smallstd y1 beta, bigstd x1 beta -
smallstd y1 alpha} /.

{x1-> Random[ndist],y1-> Random[ndist]};

gprincipalaxes = Plot[{x (beta/alpha),
x (-1/(beta/alpha))}, {x,-4,4},
PlotRange->{{-4,4},{-4,4}},
PlotStyle->{RGBColor[1,0,0]},
AspectRatio->1,DisplayFunction->Identity];

x1 and y1 are said to be correlated. Let's view a scatterplot of samples from these two correlated Gaussian random variables.

npoints = 200;
rvsamples = Table[rv,{n,1,npoints}];

g1 = ListPlot[rvsamples,PlotRange->{{-4,4},{-4,4}},
AspectRatio->1, DisplayFunction->Identity];

Show[g1,gprincipalaxes,
DisplayFunction-> $DisplayFunction];
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Standard Principal Components Analysis (PCA)
In the previous section, we developed a model for synthetic data--so we know the statistical structure. Usually, we don't 
have a good model of the statistical structure of an ensemble, but want to discover something about it. It is usually too hard 
to find a complete model of the underlying distribution, but we can still analyze the data to find means, variances and so 
forth. When dealing with a high-dimensional ensemble, sometimes most of the variation is occuring in some subspace. In 
the example above, most of the variation is occuring in the 1D subspace defined by a line of slope theta. How can we 
discover that without having the model before us? 

PCA provides the method. PCA seeks out a new coordinate system that is just a rotation of the original that does two very 
interesting things: 1) The data when projected onto the new rotated coordinates are no longer correlated--in fact the 
autocovariance matrix (see  below) is diagonal; 2) The new coordinates can be ordered so that the main or "principal 
component" has the most variance, the next has the second most, and so forth. How is this done? It turns out that the 
eigenvectors of the autocovariance matrix are the principal components, and the eigenvalues  are the variances of the data 
when projected onto the new axes.

What good is PCA for a data set?  If the variance of some of the projections is near zero, one can in fact dispense with these 
components and achieve a good approximate coding of the data with just the remaining coordinates. We are going to see 
that in the 2D example, we can get an economical coding of the data with just one number, rather than two.

à Calculate the autocovariance matrix

Let E[¥] stand for the expected or average of a random variable, ¥. The autocovariance matrix of a of vector random variable, 

x,  is: E[  [x-E[x]][x-E[x]]T  ]. Let's compute the autocovariance matrix for rv.  The calculations are simpler because the 

average value of rv is zero. As we would expect, the matrix is symmetric:

autolist = Table[
Outer[Times,rvsamples[[i]],rvsamples[[i]]],

{i,Length[rvsamples]}];
MatrixForm[auto=

Sum[autolist[[i]],
{i,Length[autolist]}]/Length[autolist]]

Clear[autolist];

13.8967   5.64077
5.64077   2.35884

The variances of the two inputs (the diagonal elements) are due to the projections onto the horizontal and vertical axis of the 
generating random variable.

à Calculate the principal components (eigenvectors of the autocovariance matrix)

Now we will calculate the eigenvectors of the autocovariance matrix
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MatrixForm[eigauto = Eigenvectors[auto]]

0.926014    0.377488
-0.377488   0.926014

Remember that the eigenvectors of a symmetric matrix are orthogonal. You can check that these are.

Let's graph the principal axes corresponding to the eigenvectors of the autocovariance matrix together with the scatterplot 
we plotted earlier.

gPCA = Plot[{eigauto[[1,2]]/eigauto[[1,1]] x,
eigauto[[2,2]]/eigauto[[2,1]] x},

{x,-4,4}, AspectRatio->1,
DisplayFunction->Identity,
PlotStyle->{RGBColor[1,.5,0]}];

Show[g1,gPCA,DisplayFunction->$DisplayFunction];
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You can see that PCA has discovered  important structure in the input ensemble.

à Calculating the variances (eigenvalues)

Before calculating the eigenvectors, you should be able to figure out what they should be, if PCA is doing what we think it 
is.

The eigenvalues give the ratio of the variances of the projections of the random variables rv[[1]], and rv[[2]] along the 
principal axes:
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eigvalues = Eigenvalues[auto]

{16.1962, 0.0593863}

The projections along the principal axes are now decorrelated. We can see this by calculating the autocovariance matrix of 
the projected values:

autolist = Table[
Outer[Times,eigauto.rvsamples[[i]],
eigauto.rvsamples[[i]]],{i,Length[rvsamples]}];

MatrixForm[Chop[
Sum[autolist[[i]],

{i,Length[autolist]}]/Length[autolist]]]
Clear[autolist];

15.3486     0
0           0.0533513

Note that the off-diagonal elements (the terms that measure the covariation of the transformed random variables) are zero. 
Further, the diagonal elements are estimates of the population variances along the principal axes. The population variances 
are given by the bigstd^2, and 

smallstd^2 from our synthetic data model.

How can we do PCA using brain-style computation?

Neural network model using Hebb together with Oja's rule for extracting 
the dominant principal component

à Introduction to Oja's network: weight normalization

Consider the following linear neural network. The input and output values are represented by vectors x, and y respectively. 
The connection weights are represented by matrix Q. 
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We will combine the outer product form of Hebb's rule, together with Oja's modification. Without Oja's rule, the Hebb rule 
does not place a limit on the size of the weights.

Dqij = a x j yi - qij yi
2( )

à Exercise: Show that when the weights are no longer changing, that:

wij
2

i, j
å = 1

à Implementing Oja's network

Oja's rule constrains the sum of the squares of the weights to approach 1. We will set the intial values of the weight matrix 
to random values between 0 and 1.

npoints = 400; p1 = {}; h = 0.01;
size = 2;
Q = Table[Random[], {size}, {size}];

Note that a space in Mathematica  between two expressions does an element by element multiplication. We use this notation 
as economical way of writing Oja's rule. An example is:

MatrixForm[{{a,b},{c,d}} {x,y}]

a x   b x
c y   d y
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Note that this different from standard matrix multiplication.

For[i=1,i<=npoints,i++,
x = rv; y = Q.x;
Q = Q + h (Outer[Times,y,x] - Q y y);

(*p1 keeps track of the evolution of the weights
in terms of the slopes of the rotated coordinates*)

If[Mod[i,5]==0,
p1 = Join[p1,{{Q[[1,2]]/Q[[1,1]],
Q[[2,2]]/Q[[2,1]] }}]];

];

à Graph the evolution of the network: slopes of the projection axes

Let's plot the slopes of projection axes as a function of iterations. We've sampled every 5th value, using Mod[i,5], and 
stored it in p1. These values should approach the slope of the scatter plot,  Tan[theta].

Plot[ Tan[theta],{x,0,Length[p1]}, AxesOrigin->{0,0},
 DisplayFunction->Identity,

PlotStyle->{RGBColor[1,0,0]}];

ListPlot[Map[#[[2]]&,p1], AxesOrigin->{0,0},
PlotJoined->True, DisplayFunction->Identity,
PlotStyle->{RGBColor[0,.5,0]}];

ListPlot[Map[#[[1]]&,p1], AxesOrigin->{0,0},
PlotJoined->True, DisplayFunction->Identity,
PlotStyle->{RGBColor[0,0,1]}];

Show[%,%%,%%%, DisplayFunction->$DisplayFunction];
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There is some random fluctuation in the weights. We can obtain more stability by having a time constant over which the 
Hebbian term and the variance of y are averaged.

à Graph the slope of the slope of the projection axes (ratio of network weights) together with the data

We can see how well the coordinate transformation fits the principal axes of a sample scatter plot: 

gnetwork = Plot[
{s p1[[Length[p1]]][[1]], s p1[[Length[p1]]][[2]]}, 
{s, -4, 4}, PlotRange->{{-4,4},{-4,4}},
AspectRatio->1,PlotStyle->{RGBColor[0,.8,0]},
DisplayFunction->Identity];

Show[gnetwork,g1,DisplayFunction->$DisplayFunction];

-4 -3 -2 -1 1 2 3 4

-4

-3

-2

-1

1

2

3

4

You can verify that the network does a good job of extracting the principal component.  Recall that the slope for the 
population distribution is Tan[theta]:

N[Tan[theta]]

0.414214

The only problem with this network is that having two output neurons is redundant--they both pull out the same principal 
component--the dominant axis. The slopes for both are:

p1[[Length[p1]]]

{0.443491, 0.443491}
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This isn't surprising because the network was symmetrical--both output neurons saw the same inputs and updated their 
weights using the same rule. How can this be fixed to pick out the other principal components? Some kind of asymmetry 
has to be introduced. 

A generalization of Oja's rule for extracting all of the principal 
components (Sanger, 1989)

à Introduction to Sanger's network for PCA

The problem with Oja's network is that it extracts just the main principal component. Our example had two outputs, but the 
network is symmetric, and both outputs were the same--the projection of the input onto the main principal axes. Sanger 
proposed a modification to the Oja network that can extract all of the principal components.

Sanger, T. (1989). Optimal unsupervised learning in a single-layer linear feedforward neural network. Neural Networks, 2, 459-473.

We will use the same network as in the above example. However, the normalization part of learning rule will be asymmetric. 
The generalization of Oja's term to update weights q,  is given by:

Dqij = a x j yi - yi qkj yk
k=1

i

å
æ

è
ç

ö

ø
÷

à Implementing the Sanger network

The above learning rule can be evaluated in Mathematica  as: LT Outer[Times,y,y]).Q, where LT is a lower triangular 
matrix. The entries above the diagonal are all zero, and the entries below and including the diagonal are one. You can verify 
the Sanger weight update formula with the following expressions:

n = 2; 
LT = Table[If[i>=j,1,0],{i,n},{j,n}];
WW = Array[w,{n,n}];
yy = Array[y,{n}];
(LT Outer[Times,yy,yy]).Q

OK, let's try Sanger's network out on our synthetic data.

npoints = 1200;
p1 = {}; a = 0.02;
size = 2;
LT = Table[If[i>=j,1,0],{i,size},{j,size}];
Q = Table[.3 Random[], {size}, {size}];
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For[i=1,i<=npoints,i++,
x = rv; y = Q.x;
deltaQ = (Outer[Times,y,x] - (LT Outer[Times,y,y]).Q);
Q = Q + a deltaQ;
If[Mod[i,10]==0,

p1 = Join[p1,{{Q[[1,2]]/Q[[1,1]], Q[[2,2]]/Q[[2,1]] }}]];

];

You may have to adjust the learning constant. It can take 1000's of iterations to converge, so don't give up easily.

à Graph the evolution of the network weights in terms of the slope

From the model of our synthetic data, the two slopes should be: 

Tan[theta] and -1/Tan[theta]. Let's take a look at the slopes of the transformed coordinates in the list p1:

Plot[-1/Tan[theta],{x,0,Length[p1]},DisplayFunction->Identity,
PlotStyle->{RGBColor[1,.5,0]}];

Plot[Tan[theta],{x,0,Length[p1]}, DisplayFunction->Identity,
PlotStyle->{RGBColor[1,0,1]}];

ListPlot[Map[#[[2]]&,p1], 
PlotJoined->True, DisplayFunction->Identity,
PlotStyle->{RGBColor[0,.5,0]}];

ListPlot[Map[#[[1]]&,p1],
PlotJoined->True, DisplayFunction->Identity,
PlotStyle->{RGBColor[0,0,1]}];

Show[%,%%,%%%,%%%%, DisplayFunction->$DisplayFunction];
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Note that the number of iterations is plotted in multiples determined by the Mod[] function above.
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à Graph the transformed axes of the Sanger network and compare them to those from the underlying 
distribution

Let's plot up the transformation axes of the Sanger network (gnetwork2),  and compare them with the axes from the 
population distribution (gprincipalaxes), the calculated principal component axes (gPCA):

gnetwork2 = Plot[
{s p1[[Length[p1]]][[1]], s p1[[Length[p1]]][[2]]}, 

{s, -1, 2}, PlotRange->{{-4,4},{-4,4}},PlotStyle->{RGBColor[1,1,0]},
AspectRatio->1, DisplayFunction->Identity];

Show[gnetwork2, gprincipalaxes,gPCA,
DisplayFunction->$DisplayFunction];
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Optional: Foldiak's decorrelating scheme using Hebbian and anti-Hebbian learning

Rigid rotations aren't the only possible transformations that decorrelate the inputs. Further, one might one a new coordinate 
system that shares the variance equally--after all, we do not have strong evidence that neurons vary greatly in their ability to 
code the range of variation. This section looks at a network due to Peter Foldiak.

Foldiak and Barlow devised a neural network that combined a Hebbian learning rule on the forward connections with anti-
Hebbian learning on the inhibitory connections between the output units.  Oja's rule was used to normalize the weights. It 
can be shown that decorrelated output values are steady-state solutions for the weight changes. 

As far as I know, the weight space dynamics of this network have not been formally characterized and it may have multiple 
distinct steady-states. View this section on Foldiak's algorithm as something to explore and play with. 

One of the reasons for interest in this kind of model are the potential relations with the physiology. Inhibitory links are well-
known, and evidence for anti-Hebbian learning is something to be looked for empirically.
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For a fixed set of weights, the steady state of the network unit values is the solution to: 

y = Q.x + W.y, which is y = T.x, where

T = Inverse[I - W].Q.

For the simulations, we will use Wconnections to specifiy the connectivity. It wouldn't be very efficient with a large 
network, but it enables us to keep the code simple. We will also update the weights after averaging over timeconstant 
stimulus presentations.

npoints = 256; timeconstant = 4;
b = 0.01; p1 = {}; a = 0.01;

size = 2;
Wconnections = Table[1,{size},{size}];
Wconnections[[1,1]] = 0; Wconnections[[1,2]] = 1;
Wconnections[[2,1]] = 1; Wconnections[[2,2]] = 0;

one = IdentityMatrix[size]; zero = Table[0,{size},{size}];
W = Wconnections zero;
Q = Table[Random[],{size},{size}];
varY = Table[0.0,{size}];
deltaQ = zero; deltaW = zero;
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For[i=1,i<=npoints,i++,
T = Inverse[one - W].Q;
deltaW = zero; deltaQ = zero; varY = 0 varY;

 For[j=1,j<=timeconstant,j++,
x = rv; y = T.x;
deltaW = deltaW + Wconnections Outer[Times,y,y];
deltaQ = deltaQ + Outer[Times,y,x];
varY = varY + (y y);];

W = W - a deltaW/timeconstant;
Q = Q + b (deltaQ - Q varY)/timeconstant;
If[Mod[i,8]==0,

p1 = Join[p1,{{T[[1,2]]/T[[1,1]],
T[[2,2]]/T[[2,1]] }}]];

];

Below, I show the results after runing the above loop five times.

ListPlot[Map[#[[2]]&,p1], AxesOrigin->{0,0},
PlotJoined->True,
DisplayFunction->Identity,
PlotStyle->{RGBColor[0,.5,0]}];

ListPlot[Map[#[[1]]&,p1], AxesOrigin->{0,0},
PlotJoined->True,
DisplayFunction->Identity,
PlotStyle->{RGBColor[0,0,1]}];

Show[%,%%, DisplayFunction->$DisplayFunction];
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gnetwork = Plot[
{s p1[[Length[p1]]][[1]], s p1[[Length[p1]]][[2]]}, 

{s, -6, 6}, PlotRange->{{-6,6},{-6,6}},
AspectRatio->1,
DisplayFunction->Identity];

Show[gnetwork,g1,DisplayFunction->$DisplayFunction];
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Independence and decorrelation
There has been recent discussion of the utility of both decorrelated and statistically independent representations. We don't 
have time to go into the details, but the interested student should take a look at Barlow (1990), Bell and Sejnowski (1995), 
and Olshausen and Field (1996).

Lect_14_Mathematica.nb 15



References
Baldi, P., & Hornik, K. (1989). Neural networks and principal components analysis:Learning from examples without local 
minima. 2, 53-58.

Barlow, H. (1990). Conditions for versatile learning, Helmholtz's unconscious inference, and the task of perception. Vision 
Research, 30(11), 1561-1572.

Bell A.ÊJ.   and Sejnowski  T.ÊJ.  . An information-maximization approach to blind separation and blind deconvolution. 
Neural Computation, 7(6):1129-1159, 1995.

Barlow, H. B., & Foldiak, P. (1989). Adaptation and decorrelation in the cortex. In C. Miall, R. M. Durban, & G. J. 
Mitchison (Ed.), The Computing Neuron Addison-Wesley.

Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components. J. Educ. Psych., 24, 
417-441,498-520

Oja, E. (1982). A simplified neuron model as a principal component  analyzer. Journal of Mathematical Biology, 15, 
267-273

Olshausen, B. A., & Field, D. J. (1996). Emergence of simple-cell receptive field properties by learning a sparse code for 
natural images. Nature, 381, 607-609.

© 1998 Daniel  Kersten,  Computational  Vision Lab, Department  of Psychology,   University  of Minnesota.

16 Lect_14_Mathematica.nb


